Software/Medical engineer | M.S. Physics and engineering @ UCL23'
View the Project on GitHub xiaowshi/Long-Term_Reprojection_Loss
torchvision 0.12.0, CUDA 10.2, tensorboardX 1.4
If you’re using older version of torchvision, you need to:
align_corners=True
using F.interpolate
and F.grid_sample
to garentee a good camera trajectory, as these methods has been changed to use align_corners=False
by default in later version.transforms.ColorJitter()
with transforms.ColorJitter.get_params()
.The dataset is available on the SCARED official website.
ffmpeg -i /path/to/rgb.mp4 -filter:v "crop=1280:1024:0:0" /path/to/crop_rgb.mp4
ffmpeg -i /path/to/crop_rgb.mp4 %6d.jpg
CUDA_VISIBLE_DEVICES=1 python train.py --data_path <path/to/SCARED/> --log_dir <path/to/save/weights> --batch_size 20 --frames_ids 0 -1 1 -2 2
CUDA_VISIBLE_DEVICES=1 python evaluate_depth.py --load_weights_folder <weights_path> --eval_mono --eval_split endovis --data_path </path/to/SCARED> --max_depth 150.0
CUDA_VISIBLE_DEVICES=1 python evaluate_pose.py --data_path <path/to/SCARED/> --eval_split endovis --load_weights_folder <weights_path>
| Model | Abs Rel | Sq Rel | RMSE | RMSE log | Link | | ———— | ———- | —— | ——— | —- | —- | | Results | 0.058 | 0.452 | 5.014 | 0.083 | google drive|
CUDA_VISIBLE_DEVICES=1 python test_simple.py --model_path <model_path> --image_path <image_path>
visualize pose
python visualize_pose.py
visualize 3d reconstruction
python visualize_reconstruction.py --data_path <path/to/dataset> --load_weights_folder <path/to/weight/folder> --eval_mono
Our code is built on top of the implementation of Monodepth2.